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A previous work introduced an optimal identification (Ol) technique for reliably extracting model parameters
of biochemical reaction systems from tailored laboratory experiments. The notion of optimality enters through
seeking an external control in the laboratory producing data that leads to minimum uncertainties in the identified
parameter distributions. A number of algorithmic and operational improvements are introduced in this paper
to Ol, aiming to build a more practical and efficient closed-loop identification protocol/procedure (CLIP) for
nonlinear dynamical systems. The improvements in CLIP include (a) inversion cost function modification to
preferably search for the upper and lower boundaries of the parameter distributions consistent with the observed
data, (b) dynamic search range updating of the unknown parameters to better exploit the information from
the prior iterative experiments, (c) replacing the control genetic algorithm by the simplex method to enable
better balance between operational cost and inversion quality, and (d) utilizing virtual sensitivity optimization
techniques to further reduce the laboratory costs. The workings of CLIP utilizing these new algorithms are
illustrated in indentifying a simulated tRNA proofreading model, and the results demonstrate enhanced

performance of CLIP in terms of algorithmic reliability and efficiency.

1. Introduction result in erroneous model predictions, especially under condi-
tions different from those involved in the identification.

A previous study presented an optimal identification (Ol)
procedure for reliably extracting the model parameters of
biochemical reaction networks from tailored laboratory data.
Ol differs from traditional approaches in two general aspects.
First, it aims at recovering the full family of parameter values

solutions normally exist for overdetermined problems where consistent with the !aboratory _data. Second, It integrates
there are more equations than the unknown parameters, and th@pPpropriate .computatlonal algon.thms with the expenmgntal
error distribution of the extracted parameters usually can be capabilities in a closed-loop_fashmn to search for the OPt'ma'
calculated from the measurement error. Similar principles have laboratory controls/perturbations and observations that result in
been employed in several recent studies for identifying nonlinear maximal reducnon of the uncertainties in the extrgcteq param-
dynamical system.® Complexities can arise in the latter case, eters. The operation .of Ol was slllmulated in the identification
however, because multiple solutions can exist even when theOf a tRNA proofr(_ead_mg systef, wh_ere ol _y_|elded_ bette_r
system is overdetermined, due to the nonlinearity, the limited accuracy and reliability compared with traditional inversion
amount of laboratory data, and the data noise. In addition, the methods. ) ) ) o
error propagation from the laboratory data to the inverted model A Potential concern when implementing Ol is its laboratory
parameters is also generally nonlinear and usually cannot bed computational costs. The determination of the optimal
explicitly determined. Consequently, obtaining one solution for Iaborzgolgy controls was achieved using a genetic algorithm
the set of model parameters can often be unreliable and may(GA)-“**The GA provides favorable global search ability, but
it normally requires a large number of laboratory experiments

* To whom correspondence should be addressed. Phone: (609) 258-10 converge. In the system inversion following each experiment,
3917. Fax: (609) 258-0967. E-mail: hrabitz@princeton.edu. a large population of parameter sets was usually needed to define

Inferring mathematical models of dynamical systems from
laboratory or field observations has always been a subject of
interest in science and engineering. An important subdivision
of this field addresses the identification of nonlinear systems,
which pose problems and require solutions distinct from their
linear counterparts. For linear system identificattomnique

10.1021/jp0561890 CCC: $33.50 © 2006 American Chemical Society
Published on Web 06/06/2006



7756 J. Phys. Chem. A, Vol. 110, No. 25, 2006

the full parameter family consistent with the data, which can
be computationally very expensive, especially when integrated
with the iterative process of laboratory control optimization by
the GA.

To address these issues, this article introduces various
improvements to Ol's operational procedure and algorithmic
components. The resultant closed-loop identification protocol
(CLIP) serves not only as an enhancement to Ol for identifying
biochemical reaction models but also more importantly as an
algorithmic platform containing a growing suite of user-
selectable modular components that can perform reliably in more
general nonlinear system identifications. As an alternative to
the GA, the control module of CLIP employs the Neld@&tead
simplex algorithrd’18 to search for the optimal laboratory
controls, thereby allowing for a favorable balance between
lowering the number of experiments and maintaining a high-
dimensional search capability. CLIP’s inversion module also
includes an enhanced inversion algorithm with (a) cost function
modification for better extraction of the parameter distributions

and (b) dynamic updating of the parameter search ranges to

provide elevated inversion quality and algorithmic efficiency.
Last, a virtual sensitivity optimization algorithm is introduced
to CLIP's analysis module to estimate the best laboratory
controls before the iterative inversion process, thus enabling
further reduction of the identification cost. The performance of
CLIP is demonstrated in the identification of the same tRNA
proofreading model®1tand the comparison with the original
Ol method suggests that the algorithmic improvements can
enable more reliable and cost-effective parameter identification
for nonlinear dynamical systems.

2. Concepts and Algorithms

2.1. The Optimal Identification Algorithm (OI). This
section will summarize the OI algorithm as it forms the
foundation of CLIP. One special feature of Ol is its ability to
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Figure 1. General operational procedure of Ol and CLIP for identifying
model parameters of nonlinear dynamical systems, adopted from Figure
1 of ref 1. The proposed mechanism and previous knowledge of the
target system is provided to the analysis module, which estimates the
best system components for controlling the systeghgnd recording

its responsesx(). In the control module, time-dependent trial controls
uq(t) are applied and the system’s behavkit) is measured. The
inversion module extracts the full distribution of paramekecsnsistent

with the laboratory data and calculates its inversion qu&lity, which

is then returned to the control module to calculate the control&@st

recover the full family of model parameter values consistent for selecting new experiments, with the purpose of achieving better
with the laboratory measurements. More importantly, Ol oper- inve_rsion quali_ty.'This _iterative operation continues until the best
ates in a closed-loop fashion to guide the experiments so thatf;t:)%?;g'g qcli)a::gr;n?sc?r(]f;l(?d ;%’eag;g?yggdgggﬁigr%ef%i |l|;nda?5r0any
ghe _lk_)readth t?f ghet d|3tr|bu(tj|(]2n fo;hthg fcons?tent p‘i“’?‘m‘zt?r involves a virtual sensitivity optimization technique for estimating the
tﬁ(ram(;(:)?ir(rzgll c(ca)nt(raosl rrr?e:scl?ren:cérr?ts etf:?,lsorlr:: dlicr:rg]} th:)n ;Ig;mlanl best controlui(t) before the iterative inversion process, to further

> DR THE g ' ‘el reduce the laboratory cost (section 2.2.3).
reliability in parameter inversion and subsequent model predic-

tions. The utilization of closed-loop experiment optimization sych as laboratory capabilities, the analysis module employs
is well established in linear system identificatbf. For ~  system-dependent sensitivity analysis algorithms to estimate the
nonllneal’ System |dent|f|cat|on, hoWeVer, most effOI’tS are SU" bes’[ targets(r for monitoring the sys’[em's dynan’ucs and the
focused on extracting model parameters from a given/specific pest targets for controlling (disturbing) the syste#?526

data set?** instead of further optimizing the experiments  On the basis of the estimates from the analysis module, the
whose resultant data can lead to enhanced achievable inversioRsnirol module applies a set btrial control vectorsml(t)
M, ..

quality. In 'ghis conte.xt,.OI .specifically.aims to explpit closed- uic(t), .., u(t)) in the laboratory tox, and records the response
loop experiment optimization for nonlinear dynamical system 'y 15 each control vector at multiple times. The parameter

ider}tification. . _vector a characterizing thdth control vectoru'(t) and the
Figure 1 shows the three general components (i.e., the analysis i i ¢ . .
module, the control module, and the inversion module) of the system's re_sponsé(,(t) are _then f_orwarde_dito the mnversion
Ol procedure for identifying the unknown parameter vetor module, which returns th? inversion qually,, representing .
= (ka Ko, ky) of a specified ODE model representing a the breadth of the distribution for the extracted parameter family
nonlinear d;/na’mical system consistent with the observed daXa(t) (see eq 4). The cost

function J,,,, for u(t) is calculated as

dx,

= k) + )

i
ctrl

n=1,2 ..N (1) =Q., +wRuLt),X\(t)] )

wherex, € x is thenth component of the system amg(t) € where R[g'c(t),XL(t)] is a po;itive s.emidefiniti\./(_a functional .
uc(t) is the time-dependent external control flux associated with representing the costs associated with any additional constraints
x». Utilizing available semiquantitative or qualitative knowledge for the controlsug(t) and the laboratory measuremetgt),

about the system and incorporating other relevant information andw is a positive weight parametel,, is used by a genetic
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algorithm'213 (referred to as the control GA) to optimize(t) convergent parameter distribution for the contm{t). This
in an iterative fashion until one or a few control vectors are requirement imposes a heavy computational burden with the
found to achieve optimal reduction @, (hence optimal  inversion GA, which possesses the global search capability
reduction of the uncertainties k. crucial to the algorithm’s reliability but lacks in convergence
Similar to traditional identification methods, the inversion efficiency. In the control module, the control vectcm{;{t) are
module seeks the model parameterthat minimize the norm optimized by another GA, whose convergence can require a
|1X2% — X%| of the difference between observed and calcu- large number of (sometimes expensive) experiments together
lated temporal responses of the target system. Unlike most otheiwith the associated increment of computational cost. These two

methods that provide only one or a few solutions korOl problems can be increasingly serious for large nonlinear systems,
searches globally within a predefined domain of high- when algorithmic scalability also needs to be taken into account.
dimensional parameter spade-[ kY] (with kt andkVY being A number of modifications are implemented to all three

the corresponding lower and upper limits, respectively), aiming modules of Ol to address the above issues. The goal is to form
to recover the full family ofk vectors consistent with the a foundation of CLIP that can incorporate particular computa-
laboratory data. This treatment maximally avoids false conver- tional algorithms to satisfy specific identification requirements.
gence to local minima in the search process, which can be Suitable algorithmic components of CLIP will be selected on
especially important in the presence of large laboratory noise. this basis to treat practical nonlinear system identification
The global inversion is achieved by another GA (the inversion problems reliably and efficiently. This work focuses on the
GA), which utilizes a cost function that compares the calculated implementation of several algorithmic improvements for iden-
system response to the experimental measurements, such as tification along with their application in simulated ODE systems.
However, the principles and basic operational procedure of CLIP

Jlnp - should be readily applicable to the identification of nonlinear
" iobs_ vipcal dynamical systems represented in other mathematical forms,
N _ IXae — Xt = €, such as PDEs or stochastic equations, although the computa-
1t |X:00S — xi-b.cal 3) tional cost in the latter cases may be much higher.
N&aTE — © X=X > e, 2.2.1. Impraements in the lpersion Module.The cost

function of the inversion GA (eq 3) indicates that, in the
parameter inversion process, all trial parameter vedtdrare

ip e ) ) weighted equally as long as they result in identical values for
where Ji,, represents the “fitness” of theth trial parameter  he norm of the difference between measured and calculated
vectork'® for theith control vectoru(t), N: is the number of  system behavior. Using this cost function, the inversion GA
system components; selected for recording the system’'s aims at recovering a discrete sampling/approximation of the full
response at thé time points i, ..., tr), ande, is the measured distribution of the consistent parametedss In certain cases,

or estimated experimental error. The inversion GA iterates until however, obtaining the full distribution function may not be

a sufficient numbels of k's (s =1, 2, ...,§ solutions with  critical for characterizing the inversion quali),,,. In eq 4,
satisfactoryd:® values are obtained to constitute a convergent for example,Q,,, for ug(t) is determined only by the maximum
sample k%, ..., k'S, ..., k"9 of the distribution of the consistent klmmax) and minimum K%, ) values of the distribution deImS
parameters The inversion qualig;,, corresponding to the Generally, the inversion GA, using eq 3 as its cost functlon,
distribution ofk' can be calculated as does not preferably search fd® solutions neark;? ..

_ Mnmm, and much computational time is spent in |dent|fyl¢,@
, S
. max klmm.n values lying in the middle of the solution distribution, which
Q= M Z (4) are not used for calculatin@j,, represented by eq 4.
An alternative algorithm is introduced to the inversion module
of CLIP to enhance the computational efficiency in obtaining

is is ! -
where kg, and Ky are the extracted upper and lower yis  angis values when the full consistent parameter

bounds, respectively, of the distribution kdf’ for the control distribution is not needed.This algorithm utilizes two inversion
u(t), andin is the normalization parameter fe. Because a  GAs that search separately fdf solutions near the upper and
smallerQ;,, value corresponds to a narrowker distribution, lower edges okq's predefined search ranges. This capability

minimization ofQj,, is sought by the control module (using eq is achieved by appropriate modification of the cost functions
2 as the cost function) over the evolving Ol iterations. The for the GA search. While functions of various forms can be
inversion quality measure in eq 4 is very conservative, as it selected as the inversion cost function, in the present work the
uses only the lowest and the highest parameter values found tofollowing forms are used:

be consistent with the data. Other measures (e.g., the distribution

width or entropy) could be used as weltt ¢ It is notable that, M [k — ki + ¢, |"
although the control term,(t) enters eq 1 linearly in this work, J' P = J:n?, _— (5)
it is not a general requirement, because the operation of the k'LTJ] — ern—i— Cr

inversion GA requires only knowledge of the input parameters
(trial rate constant&'P) and the corresponding cost function and
values (i°), which does not depend on the detailed math-

ematical form of the model as long a,é,’v is computable from ; | M k:hp - ern + 6"
the model equations. P = JmE/ N L (6)
2.2. The Closed-Loop Identification Protocol (CLIP).Two m=1\ Ko, — Ky + €y

practical issues may impede Ol's real-world applicability. In
the inversion module, a large population (hundreds to even wherek? andkm are the upper and lower search rangeskfgr
thousands) ok's solutions are normally needed to provide a respectively,J®, is calculated from eq 3, and/ is a user-
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selected weight parameter. On the right-hand side of eqs 5 and 2.2.3. Impra@ements in the Analysis Modulerevious studies

6, J:;]pv serves to minimize the difference between the calculated have shown that the identifiability and the inversion quality of

system behavior and the laboratory measurements, whereas thenknown model parameters are directly associated with the

additional multiplicative term guides the GA search Idf experimental sensitivity coefficientsn,, defined as the sensitiv-
toward the upper or lower edges df[kV]. In eqs 5 and 6k" ity of the nth experimental observabl&{in eq 1) with respect
— K- is incremented by a positive, user-selected consiat to themth model parameter to be inferrek,(in eq 1)*°3! This

avoid potential singular behavior whéf| — K- is very small. observation suggests that the laboratory controls that optimize
The second added feature in the inversion module of CLIP Lmn (i-€., maximize the magnitude dfn)) may also result in

involves a dynamic updating of the parameter search ranges favorable inversion quality for the model parameter<on-

in which the initial parameter boundariéd) and K- are Sequently, sensitivity optimization can be employed in CLIP's

is s ; . analysis module (prior to the iterative inversion process among
replaced bykn may aNd Ky, respectively, obtained from the the control and the inversion modules) to estimate the control-

parameter inversion after each control experiméit). This X : .
update allows the inversion process with the next trial control _(S) uc(_t) that _ma); result in-maximal or at least enhanced
inversion qualityQ;,,.

u-"(t) to operate within a reduced search range; thus, it . L o
e () P g The experimental sensitivity coefficient, (t) for the con-
trol uyt) at time t can be calculated in different ways

utilizes information from the preceding control experiments with
depending on the circumstances. If the search rangks arfid

uc(t), ...,uic(t), resulting in improved algorithmic performance.
When the modified inversion GA is employed together with o e o ;
the dynamic search range updating, the inversion quality canth€ variations inX.(t) are sufficiently small,L,(t) can be

be calculated alternatively as determined by a partial derivativée In X (t)/d In kp.3%3% In
cases where either term is large, global sensitivity measures
Q!n = become more appropriate. One convenient way to obtain the
nv

global sensitivity coefficienLimn(t) is to randomly sample the
model parameters within their search rangés$,KY] and

15 — 15 — [
L™ \/é Z(klrhsu - Krhs'u)z + \/é Z(klrhgl - kIrfI)Z calculate the system’s respon)gﬁ,f,‘-I for each sampl&? (z= 1,
5 =

@) 2, .., 2). L;,(t) can then be determined as a standard deviation

M = km,max_ km,min +cy 7 12
(X — DX, 07

whereki;f“ represents theth consistent solution when eq 5 is

used as the GA cost function to search for the upper boundary Limn(t) = (8)
of kn with the controlug(t). ky™ corresponds to the mean of z
k- k™ and k" are counterparts ok, and ki, respec- yhere[X! [is the mean of thec?, values averaged over tie

tively, in searching for the lower boundary lef. This measure  gamples. This measure is directly associated with classical Monte
reflects the normalized standard deviation of the extracted ¢4y integration and has been used elsewPeNote that all
parameter distributions for botks* andk's' and we find it the M parameters, are randomly sampled simultaneously in
more accurate and convenient in defining the inversion quality cajcylating the global sensitivity. A normalized sum of these
when using the modified inversion GA with the dynamic search giohg| sensitivity terms can be used to compute the cost function

range updating. i RN
292 2 pImpr(a?ements in the Control Modulds illustrated in Jsensfor optimizing (usually maximizing)(9), such as
ref 1, the nature of the control GA enables a global search for troa N
controls uy(t) providing maximal information content in the \]isensz_‘z_ [a, L (1)] 9)
data for retrieving the highest-quality model parameters, but SENA=

this property may also lead to an undesired increase in the

number of iterative experiments. To alleviate this disadvantage wherea,, = 0 weights the role oX,.

when the laboratory cost is a major concern, CLIP incorporates  The importance of this sensitivity optimization approach lies
alternative local search/optimization algorithms in its control in its ability to save in the number of laboratory experiments.
module to replace the control GA in OI. A good choice is the Calculating and optimizingl,,;does not require any labora-
Nelder-Mead simplex method,18.2824vhich is more efficient  tory experiments because the search rangésasid the model

in exploring the complex high-dimensional control space while ODEs are both prespecified. In principle, if there exists an exact
retaining some global search capability. The logic for utilizing correspondence betwedd,,, and Jiens for the control uy(t),

such algorithms whose exploration part is deterministic resides only one run of laboratory perturbations and measurements is
in the fact that, in many cases, it suffices to identify a control necessary for extracting the best-quality model paraméters
ug(t) that is “good enough” for retrieving a parameter distribu- after the sensitivity optimization. Additionally, global search
tion of ki with adequate inversion qualit®,,, because algorithms, such as the GA can be implemented inexpensively
finding the globally optimal control with algorithms featuring for the sensitivity optimization, which can provide further
stochastic exploration (such as the GA) requires many more advantages in terms of its reliability.

experiments and may not provide much gaiQir. As a result, In typical applications, the contral’(t) that optimizesJsens

the simplex method can often provide a better balance betweenmay not be the exact one that optimiz@g,, because (a) the
operational cost and inversion quality. The simplex algorithm two measures may not have perfect correspondence, and (b)
is not employed in the inversion module because the global the sensitivity measurdensis calculated from random samples
search ability of the GA is crucial for extracting the full family  kz within the pre-defined search range- kY], whereas thés

of consistent parameters. The simplex algorithm can operatesolutions consistent with the laboratory data evidently lie in a
with eq 2 being the cost function and eq 4 or 7 representing the subdomain of k-,kV]. Two methods are introduced to address
inversion qualityQ;,,. this issue, both integrating the sensitivity optimization algorithm
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in CLIP’s analysis module with the rest of the package. The
first method utilizes the fact that the controf(t) obtained u,,(t) =Za1,| expl—(t — a,)/ay] (10)
from the sensitivity optimization usually provides better inver- =

sion quality than the random trial contralx%(t) used in the
identification without sensitivity optimization. Therefore, itera-
tive parameter identification is initiated with(t) being the
first trial control and most probably it will take less experiments
to converge. The second method also appli#f experimen-
tally and extracts the resultant consistent parameter distribution
[Khin Kimad- This information is then fed back to the analysis
module, which peforms another round of sensitivity optimization
from this reduced parameter range to updgte). This closed-
loop process continues until satisfactory parameter distributions
are obtained odsenscan no longer distinguish different control
candidates within the laboratory errors.

Because th#é" Gaussian is encoded by three control parameters
(am) with m=1, 2, and 3), a total of 12 control parameters are
optimized in searching for the best contrgl(t) that leads to
an extracted's distribution with the highest inversion quality
Q.- The coefficientay ; is confined to positive values consid-
ering the biological nature of the system. The weigtih eq 2
is set to zero, and rapidly varying structures in the controls are
prevented by setting appropriate boundaries to the control
parametersm,. The errore, represents the sum of all sources
of laboratory errors (e.g., observables, controls, etc.) and is
simulated as+10% around the steady-state values of the
corresponding system components. All rate constants are
transformed to a logarithmic scale to ensure a more thorough
sampling over the large parameter space and better normalization
Similar to the original Ol algorithm, the operation of CLIP  across different rate constants.
is simulated for the identification of a tRNA proofreading To assess the performance of the inversion module with and
mechanisni®!* The model contains 10 chemical species, 16 without the modified cost function (sections 2.1 and 2.2.1), 50
reaction rate constants, and 10 kinetic equations as shown belowrandom controlsl, (t) (i = 1, 2, ..., 50) are introduced to the
system. After appfying each control, the responsgs@ndxio

3. lllustration

dX, B is recorded afl = 10 time points and the data(i{(t), Xilo(t),
dt K-gXs Tk oXs + (kg T kX7 + (kg + ko) X5 — and a,) are forwarded to the inversion module, which
kaX, X5 — KX X, — KX Xg — K_gX X1 searches fok's solutions that achieve satisfactory agreement

between the computational and the simulated experimental data
2 within the data error. For both algorithms, a solutik't is
t (ks + k)Xg + (kg + k) Xg + KXo + KyoXyo — considered satisfactory and saved Wh]{—;ﬁ) = 1. Equation 3
ksX,Xs — KgXoXs serves as the cost function for the inversion GA in Ol, and eqs
5 and 6 (withcy, = 1 andw = 1) guide the two modified
inversion GAs in CLIP. The search continues until convergence
dt is reached for the distribution &S, corresponding to the,,
™ value in eq 4 (Ol) or eq 7 (CLIP) being stable. 500 to 1669
d_4 =1, + k_Xs + kXg — KX, X, solutions (|.e.,S= 500 to 1000) are normally needed to reach
t convergence in OI, whereas only 10200 are necessary for
dX, each GA to converge in CLIP. Most of thi; solutions
T = kgX X5 + K_gX; — — kgXoXg recovered in CLIP locate near the upper and lower edges of
the corresponding distribution, whereas they are much more
dXs scattered in Ol (data not shown here). These results clearly
ot KX Xy 1 K gXg — K_yXg — KgXoXs confirm the postulate that considerable computational time can
be wasted in Ol by searching f&r® values lying in the middle
of the solution distribution, whereas the modified inversion cost
function of CLIP can enable more efficient recovery of the
defining characteristics of thie's distribution.

X
2= KX KX — kXX,

7
t = kX Xs + KX Xg — (ks + Ky + k) X;

8 — — Figure 2 compares the inversion quali for the 50
t KXo koXiXio = (kg H ko o)X, randgom controls FE)etween Ol and CLIIg. It Ig'\”% be seen that Ol
dX, and CLIP perform comparably for the “bad” controls (i.e.,
T kX, — KX Xg — KgXg cont_rols that result in larg@;,, values), whereas CLIP tends
to yield larger@;,, values for the “good” controls than Ol
dXy does. Note that the ideal goal of the inversion module is to
o keXe — ~ KiXao extract the full family ofkis solutions consistent with the

laboratory data for any(t), thus a larger value d®,,, for the
The details of the model and the physical meaning of the speciessame control (note that in the tests with the 50 random controls,
are described in refs 1, 10, and 11. In this illustration, six rate there is no attempt at minimizin@,,,) means a better ap-
constantsk;, ke, ks, k—s, ks, kog) are selected for extraction by ~ proximation of the true solution family, which will maximize
CLIP and its algorithmic performance is compared with Ol. On the value ofQ;,, for uy(t). This indicates that the modified
the basis of the previous wotky, is selected by the analysis inversion algorithm is also more reliable in extracting the full
module as the optimal component for disturbing/controlling the family of parameters consistent with the observed data.
system (i.e.Xc = (Xa) andug(t) = (Uxa(t))), andxg andx,o are The performance of CLIP with both the new inversion module
the best for recording the system’s dynamic response %.e., and the new control module is also tested (without incorporating
= (Xg, X10) andN; = 2 in eq 3). Similar to the previous work, the sensitivity optimization algorithm in section 2.2.3). Figure
each time-dependent control flukxs(t) is expressed as a sum 3 shows the evolution of the normalized solution distribution
of four Gaussians (calculated from eq 4) over the iterative experiments of Ol and
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experiments of Ol and CLIP for inverting the six rate constants.

CLIP for inverting the six rate constants. Note that eq 7 is used 0.0012 |- 1
to calculate the inversion quality in CLIP, but the corresponding
value calculated from eq 4 is plotted in Figure 3 to provide for

a fair comparison with Ol. Ol converges afte®50 control 0001 N
experiments and CLIP converges afte0 experiments. The

upper K, ma/km) and lower K, ./km) limits of the final rate 0.0008 - . . : .
constant distributions relative to the corresponding true values 0 50 100 150 200 250 300
kn are shown in Figure 4 for Ol and CLIP. Both algorithms time (s)

extract rate constant distributions that include the true values. Figure 5. Control fluxes that give the best inversion quality, found

The final inversion quality is comparable for the two methods: by the Ol and CLIP operations.

Ol recovers slightly narrower distributions fde and k—s,

whereas CLIP provides better inversion quality kar ks, and simplex in CLIP (section 2.2.2); thus in principle Ol will find

k_e. a control that, when applied alone, can lead to better inversion
Figure 5 shows the final controls found by Ol and CLIP when quality. However, CLIP updates the parameter search ranges

the narrowest rate constant distribution is achieved. It needs to[ky, ku] bY [Kymin Knmad after each controlug(t) (section

be emphasized that the best control identified by Ol actually 2.2.1); thereby it indirectly utilizes the information froadl

yields better inversion quality compared with that achieved by previous experiments and becomes a more efficient algorithm.

CLIP’s final controlalone (see Figure 4), but Ol and CLIP's The performance of CLIP's sensitivity optimization algorithm

final inversion qualities are comparable. This phenomenon (section 2.2.3) is also assessed. A GA is employed to search

results from two differences between CLIP and Ol. First, the globaly for the best contraly (t) that maximizes the normal-

control GA in Ol is a better global search algorithm than the ized sensitivity of Xg(t) and 3(10(t) with respect to random
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Figure 6. (a) Control flux that results in the best inversion quality
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the simplex algorithm, starting from(t) instead of random controls
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tage is evident, especially when high-resolution identification
is not necessary or the experiments are very expensive.

Starting from the controls; (t) identified by the sensitivity
optimization, standard CLIP inversion is implemented with the
guidance of the simplex algorithm. After25 closed-loop
experiments (i.e., an additional laboratory cost reduction of 50%
from using the simplex algorithm with random trial controls
ug(t) as with CLIP in Figure 4), convergence is reached and
the parameter distribution is comparable with Ol (Figure 7) and
CLIP's performance in Figure 4. Additional iterative rounds of
sensitivity optimization (to provide new control.§4(t)) and
parameter inversion (to updatk;, kr.J) was also carried
out. Only moderate improvement in the inversion quality was
achieved upon the convergence of the procedure, with the main
gain coming from the initial sensitivity optimization to yield

U (0.
4., Conclusion

A previous work developed a general optimal identification
(Ol) technique for reliable inversion of biochemical reaction
networks! A number of algorithmic modifications are intro-
duced to Ol in this paper to form the foundations of a closed-
loop identification package (CLIP) for nonlinear dynamical
systems. Simulation results clearly demonstrate that the algo-
rithms in CLIP not only can reduce experimental and compu-
tational costs but also can increase reliability, inversion quality,
and exploitation of all available information.

It needs to be emphasized that CLIP does not replace, but
encompasses and enriches, the original Ol technique. The
original algorithms in Ol should not be considered as obsolete,
as the added methods in CLIP are not necessarily superior under
all circumstances. For example, the simplex algorithm may not
always behave better than a GA in the control module, because
when dealing with highly complex problems, the global search
ability of GA may be necessary for finding a good control. In
addition, CLIP should not be considered as a system-
independent, black-box method. The users will inevitably benefit
from proper usage of the existing knowledge about the target
system, careful design of the control and measurement experi-
ments, and judicous selection of the computational algorithms
and cost functions.

Despite the significant improvements, additional strategies
can be introduced to further reduce CLIP's operational costs.
For example, most of the computational time is spent on
integrating the ODEs for the trial solutiok®. Suitable mapping
techniques can be implemented to reliably interpolate the
relationship betweek!? and the system’s behavidt,(t), thus
avoiding the need for ODE integration for every tri@P.32-34

We have successfully applied concepts and algorithms similar
to those for CLIP in inverting quantum-mechanical observa-

their true values, extracted from the three corresponding methods intions 3536 Future research will aim to address specific problems

Figure 6.

variations in the six rate constants, utilizing the eq 9 (vath

= 1) as its cost function. Figure 6 shows tlnla'(t) is similar to
the best control found by OI, which is obtained by directly
minimizing the inversion quallty;)mv through iterative rounds

that may arise in identifying other networks. One issue is how
precise the target system needs to be identified. This issue is
especially relevant to bionetwork identification because biologi-
cal systems can be very robust to most small changes in its
internal parameters (e.g., neutral gene mutations), which implies
that (a) high-precision values may not be necessary for many

of laboratory control optimization and parameter inversion. The parameters and (b) integration of robust system theory and

rate constant distributions correspondmguﬁc(t are slightly
wider, meaning slightly lower inversion quallty, than those

recovered from Ol (Figure 7), which is also expected for reasons

techniques may assist the identification of these systems.
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