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A previous work introduced an optimal identification (OI) technique for reliably extracting model parameters
of biochemical reaction systems from tailored laboratory experiments. The notion of optimality enters through
seeking an external control in the laboratory producing data that leads to minimum uncertainties in the identified
parameter distributions. A number of algorithmic and operational improvements are introduced in this paper
to OI, aiming to build a more practical and efficient closed-loop identification protocol/procedure (CLIP) for
nonlinear dynamical systems. The improvements in CLIP include (a) inversion cost function modification to
preferably search for the upper and lower boundaries of the parameter distributions consistent with the observed
data, (b) dynamic search range updating of the unknown parameters to better exploit the information from
the prior iterative experiments, (c) replacing the control genetic algorithm by the simplex method to enable
better balance between operational cost and inversion quality, and (d) utilizing virtual sensitivity optimization
techniques to further reduce the laboratory costs. The workings of CLIP utilizing these new algorithms are
illustrated in indentifying a simulated tRNA proofreading model, and the results demonstrate enhanced
performance of CLIP in terms of algorithmic reliability and efficiency.

1. Introduction

Inferring mathematical models of dynamical systems from
laboratory or field observations has always been a subject of
interest in science and engineering. An important subdivision
of this field addresses the identification of nonlinear systems,
which pose problems and require solutions distinct from their
linear counterparts. For linear system identification,2 unique
solutions normally exist for overdetermined problems where
there are more equations than the unknown parameters, and the
error distribution of the extracted parameters usually can be
calculated from the measurement error. Similar principles have
been employed in several recent studies for identifying nonlinear
dynamical systems.3-9 Complexities can arise in the latter case,
however, because multiple solutions can exist even when the
system is overdetermined, due to the nonlinearity, the limited
amount of laboratory data, and the data noise. In addition, the
error propagation from the laboratory data to the inverted model
parameters is also generally nonlinear and usually cannot be
explicitly determined. Consequently, obtaining one solution for
the set of model parameters can often be unreliable and may

result in erroneous model predictions, especially under condi-
tions different from those involved in the identification.

A previous study presented an optimal identification (OI)
procedure for reliably extracting the model parameters of
biochemical reaction networks from tailored laboratory data.1

OI differs from traditional approaches in two general aspects.
First, it aims at recovering the full family of parameter values
consistent with the laboratory data. Second, it integrates
appropriate computational algorithms with the experimental
capabilities in a closed-loop fashion to search for the optimal
laboratory controls/perturbations and observations that result in
maximal reduction of the uncertainties in the extracted param-
eters. The operation of OI was simulated in the identification
of a tRNA proofreading system,10,11 where OI yielded better
accuracy and reliability compared with traditional inversion
methods.

A potential concern when implementing OI is its laboratory
and computational costs. The determination of the optimal
laboratory controls was achieved using a genetic algorithm
(GA).12,13The GA provides favorable global search ability, but
it normally requires a large number of laboratory experiments
to converge. In the system inversion following each experiment,
a large population of parameter sets was usually needed to define
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the full parameter family consistent with the data, which can
be computationally very expensive, especially when integrated
with the iterative process of laboratory control optimization by
the GA.

To address these issues, this article introduces various
improvements to OI's operational procedure and algorithmic
components. The resultant closed-loop identification protocol
(CLIP) serves not only as an enhancement to OI for identifying
biochemical reaction models but also more importantly as an
algorithmic platform containing a growing suite of user-
selectable modular components that can perform reliably in more
general nonlinear system identifications. As an alternative to
the GA, the control module of CLIP employs the Nelder-Mead
simplex algorithm17,18 to search for the optimal laboratory
controls, thereby allowing for a favorable balance between
lowering the number of experiments and maintaining a high-
dimensional search capability. CLIP’s inversion module also
includes an enhanced inversion algorithm with (a) cost function
modification for better extraction of the parameter distributions
and (b) dynamic updating of the parameter search ranges to
provide elevated inversion quality and algorithmic efficiency.
Last, a virtual sensitivity optimization algorithm is introduced
to CLIP's analysis module to estimate the best laboratory
controls before the iterative inversion process, thus enabling
further reduction of the identification cost. The performance of
CLIP is demonstrated in the identification of the same tRNA
proofreading model,10,11 and the comparison with the original
OI method suggests that the algorithmic improvements can
enable more reliable and cost-effective parameter identification
for nonlinear dynamical systems.

2. Concepts and Algorithms

2.1. The Optimal Identification Algorithm (OI). This
section will summarize the OI algorithm as it forms the
foundation of CLIP. One special feature of OI is its ability to
recover the full family of model parameter values consistent
with the laboratory measurements. More importantly, OI oper-
ates in a closed-loop fashion to guide the experiments so that
the breadth of the distribution for the consistent parameter
families can be best reduced from the information contained in
the optimal control-measurements, thus leading to maximal
reliability in parameter inversion and subsequent model predic-
tions. The utilization of closed-loop experiment optimization
is well established in linear system identification.2,19 For
nonlinear system identification, however, most efforts are still
focused on extracting model parameters from a given/specific
data set,20-24 instead of further optimizing the experiments
whose resultant data can lead to enhanced achievable inversion
quality. In this context, OI specifically aims to exploit closed-
loop experiment optimization for nonlinear dynamical system
identification.

Figure 1 shows the three general components (i.e., the analysis
module, the control module, and the inversion module) of the
OI procedure for identifying the unknown parameter vectork
) (k1, ..., km, ..., kM) of a specified ODE model representing a
nonlinear dynamical system

wherexn ∈ x is thenth component of the system andun(t) ∈
uc(t) is the time-dependent external control flux associated with
xn. Utilizing available semiquantitative or qualitative knowledge
about the system and incorporating other relevant information

such as laboratory capabilities, the analysis module employs
system-dependent sensitivity analysis algorithms to estimate the
best targetsxr for monitoring the system’s dynamics and the
best targetsxc for controlling (disturbing) the system.1,25,26

On the basis of the estimates from the analysis module, the
control module applies a set ofI trial control vectors (uc

1(t), ...,
uc

i (t), ..., uc
I (t)) in the laboratory toxc and records the response

of xr to each control vector at multiple times. The parameter
vector ai characterizing theith control vectoruc

i (t) and the
system’s responseXr

i(t) are then forwarded to the inversion
module, which returns the inversion qualityQinv

i representing
the breadth of the distribution for the extracted parameter family
consistent with the observed dataXr

i(t) (see eq 4). The cost
function Jctrl

i for uc
i (t) is calculated as

where R[uc
i (t),Xr

i(t)] is a positive semidefinitive functional
representing the costs associated with any additional constraints
for the controlsuc

i (t) and the laboratory measurementsXr
i(t),

andw is a positive weight parameter.Jctrl
i is used by a genetic

dxn

dt
) fn(x,k) + un(t) n ) 1, 2, ...,N (1)

Figure 1. General operational procedure of OI and CLIP for identifying
model parameters of nonlinear dynamical systems, adopted from Figure
1 of ref 1. The proposed mechanism and previous knowledge of the
target system is provided to the analysis module, which estimates the
best system components for controlling the system (xc) and recording
its responses (xr). In the control module, time-dependent trial controls
uc(t) are applied and the system’s behaviorXr(t) is measured. The
inversion module extracts the full distribution of parametersk consistent
with the laboratory data and calculates its inversion qualityQinv, which
is then returned to the control module to calculate the control costJctrl

for selecting new experiments, with the purpose of achieving better
inversion quality. This iterative operation continues until the best
attainable quality is achieved for all the model parameters under any
laboratory constraintsR(u,X). The analysis module of CLIP also
involves a virtual sensitivity optimization technique for estimating the
best controluc

/(t) before the iterative inversion process, to further
reduce the laboratory cost (section 2.2.3).

Jctrl
i ) Qinv

i + wR[uc
i (t),Xr

i(t)] (2)
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algorithm12,13 (referred to as the control GA) to optimizeuc
i (t)

in an iterative fashion until one or a few control vectors are
found to achieve optimal reduction ofQinv

i (hence optimal
reduction of the uncertainties ink).

Similar to traditional identification methods, the inversion
module seeks the model parametersk that minimize the norm
||Xr

obs - Xr
cal|| of the difference between observed and calcu-

lated temporal responses of the target system. Unlike most other
methods that provide only one or a few solutions fork, OI
searches globally within a predefined domain of high-
dimensional parameter space [kL, kU] (with kL and kU being
the corresponding lower and upper limits, respectively), aiming
to recover the full family ofk vectors consistent with the
laboratory data. This treatment maximally avoids false conver-
gence to local minima in the search process, which can be
especially important in the presence of large laboratory noise.
The global inversion is achieved by another GA (the inversion
GA), which utilizes a cost function that compares the calculated
system response to the experimental measurements, such as

where Jinv
i,p represents the “fitness” of thepth trial parameter

vectork i,p for the ith control vectoruc
i (t), Nr is the number of

system componentsxr selected for recording the system’s
response at theT time points (t1, ..., tT), andεn

i is the measured
or estimated experimental error. The inversion GA iterates until
a sufficient numberS of k i,s (s ) 1, 2, ...,S) solutions with
satisfactoryJinv

i,s values are obtained to constitute a convergent
sample (k i,1, ...,k i,s, ...,k i,S) of the distribution of the consistent
parameters. The inversion qualityQinv

i corresponding to the
distribution ofk i,s can be calculated as

where km,max
i,s and km,min

i,s are the extracted upper and lower
bounds, respectively, of the distribution ofkm

i,s for the control
uc

i (t), andwm is the normalization parameter forkm. Because a
smallerQinv

i value corresponds to a narrowerk i,s distribution,
minimization ofQinv

i is sought by the control module (using eq
2 as the cost function) over the evolving OI iterations. The
inversion quality measure in eq 4 is very conservative, as it
uses only the lowest and the highest parameter values found to
be consistent with the data. Other measures (e.g., the distribution
width or entropy) could be used as well.1,14-16 It is notable that,
although the control term un(t) enters eq 1 linearly in this work,
it is not a general requirement, because the operation of the
inversion GA requires only knowledge of the input parameters
(trial rate constantsk i,p) and the corresponding cost function
values (Jinv

i,p ), which does not depend on the detailed math-
ematical form of the model as long asJinv

i,p is computable from
the model equations.

2.2. The Closed-Loop Identification Protocol (CLIP).Two
practical issues may impede OI’s real-world applicability. In
the inversion module, a large population (hundreds to even
thousands) ofk i,s solutions are normally needed to provide a

convergent parameter distribution for the controluc
i (t). This

requirement imposes a heavy computational burden with the
inversion GA, which possesses the global search capability
crucial to the algorithm’s reliability but lacks in convergence
efficiency. In the control module, the control vectorsuc

i (t) are
optimized by another GA, whose convergence can require a
large number of (sometimes expensive) experiments together
with the associated increment of computational cost. These two
problems can be increasingly serious for large nonlinear systems,
when algorithmic scalability also needs to be taken into account.

A number of modifications are implemented to all three
modules of OI to address the above issues. The goal is to form
a foundation of CLIP that can incorporate particular computa-
tional algorithms to satisfy specific identification requirements.
Suitable algorithmic components of CLIP will be selected on
this basis to treat practical nonlinear system identification
problems reliably and efficiently. This work focuses on the
implementation of several algorithmic improvements for iden-
tification along with their application in simulated ODE systems.
However, the principles and basic operational procedure of CLIP
should be readily applicable to the identification of nonlinear
dynamical systems represented in other mathematical forms,
such as PDEs or stochastic equations, although the computa-
tional cost in the latter cases may be much higher.

2.2.1. ImproVements in the InVersion Module.The cost
function of the inversion GA (eq 3) indicates that, in the
parameter inversion process, all trial parameter vectorsk i,p are
weighted equally as long as they result in identical values for
the norm of the difference between measured and calculated
system behavior. Using this cost function, the inversion GA
aims at recovering a discrete sampling/approximation of the full
distribution of the consistent parametersk i. In certain cases,
however, obtaining the full distribution function may not be
critical for characterizing the inversion qualityQinv

i . In eq 4,
for example,Qinv

i for uc
i (t) is determined only by the maximum

(km,max
i,s ) and minimum (km,min

i,s ) values of the distribution forkm
i,s.

Generally, the inversion GA, using eq 3 as its cost function,
does not preferably search forkm

i,s solutions nearkm,max
i,s or

km,min
i,s , and much computational time is spent in identifyingkm

i,s

values lying in the middle of the solution distribution, which
are not used for calculatingQinv

i represented by eq 4.
An alternative algorithm is introduced to the inversion module

of CLIP to enhance the computational efficiency in obtaining
km,max

i,s and km,min
i,s values when the full consistent parameter

distribution is not needed.27 This algorithm utilizes two inversion
GAs that search separately forkm

i,s solutions near the upper and
lower edges ofkm’s predefined search ranges. This capability
is achieved by appropriate modification of the cost functions
for the GA search. While functions of various forms can be
selected as the inversion cost function, in the present work the
following forms are used:

and

wherekm
U andkm

L are the upper and lower search ranges forkm,
respectively,Jinv

i,p is calculated from eq 3, andw is a user-

Jinv
i,p )

1

Nr
∑
n)1

Nr 1

T
∑
t)t1

tT {1 : |Xn,t
i,obs- Xn,t

i,p,cal| e εn
i

|Xn,t
i,obs- Xn,t

i,p,cal|

εn
i

: |Xn,t
i,obs- Xn,t

i,p,cal| > εn
i (3)

Qinv
i )

1

M
∑
m)1

M (km,max
i,s - km,min

i,s

wm
) (4)

JU
i,p ) Jinv

i,p [∏m)1

M (km
U - km

i,p + cm

km
U - km

L + cm
)w] (5)

JL
i,p ) Jinv

i,p [∏m)1

M (km
i,p - km

L + cm

km
U - km

L + cm
)w] (6)
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selected weight parameter. On the right-hand side of eqs 5 and
6, Jinv

i,p serves to minimize the difference between the calculated
system behavior and the laboratory measurements, whereas the
additional multiplicative term guides the GA search ofk i,p

toward the upper or lower edges of [kL,kU]. In eqs 5 and 6,km
U

- km
L is incremented by a positive, user-selected constantcm to

avoid potential singular behavior whenkm
U - km

L is very small.
The second added feature in the inversion module of CLIP

involves a dynamic updating of the parameter search ranges,
in which the initial parameter boundarieskm

U and km
L are

replaced bykm,max
i,s and km,min

i,s , respectively, obtained from the
parameter inversion after each control experimentuc

i (t). This
update allows the inversion process with the next trial control
uc

i+1(t) to operate within a reduced search range; thus, it
utilizes information from the preceding control experiments with
uc

1(t), ...,uc
i (t), resulting in improved algorithmic performance.

When the modified inversion GA is employed together with
the dynamic search range updating, the inversion quality can
be calculated alternatively as

wherekm
i,s,u represents thesth consistent solution when eq 5 is

used as the GA cost function to search for the upper boundary

of km with the controluc
i (t). km

i,s,u corresponds to the mean of

km
i,s,u. km

i,s,l and km
i,s,l are counterparts ofkm

i,s,u and km
i,s,u, respec-

tively, in searching for the lower boundary ofkm. This measure
reflects the normalized standard deviation of the extracted
parameter distributions for bothk i,s,u and k i,s,l and we find it
more accurate and convenient in defining the inversion quality
when using the modified inversion GA with the dynamic search
range updating.

2.2.2. ImproVements in the Control Module.As illustrated in
ref 1, the nature of the control GA enables a global search for
controls uc

i (t) providing maximal information content in the
data for retrieving the highest-quality model parameters, but
this property may also lead to an undesired increase in the
number of iterative experiments. To alleviate this disadvantage
when the laboratory cost is a major concern, CLIP incorporates
alternative local search/optimization algorithms in its control
module to replace the control GA in OI. A good choice is the
Nelder-Mead simplex method,17,18,28,29which is more efficient
in exploring the complex high-dimensional control space while
retaining some global search capability. The logic for utilizing
such algorithms whose exploration part is deterministic resides
in the fact that, in many cases, it suffices to identify a control
uc

i (t) that is “good enough” for retrieving a parameter distribu-
tion of k i,s with adequate inversion qualityQinv

i , because
finding the globally optimal control with algorithms featuring
stochastic exploration (such as the GA) requires many more
experiments and may not provide much gain inQinv. As a result,
the simplex method can often provide a better balance between
operational cost and inversion quality. The simplex algorithm
is not employed in the inversion module because the global
search ability of the GA is crucial for extracting the full family
of consistent parameters. The simplex algorithm can operate
with eq 2 being the cost function and eq 4 or 7 representing the
inversion qualityQinv

i .

2.2.3. ImproVements in the Analysis Module.Previous studies
have shown that the identifiability and the inversion quality of
unknown model parameters are directly associated with the
experimental sensitivity coefficientsLmn, defined as the sensitiv-
ity of the nth experimental observable (Xn in eq 1) with respect
to themth model parameter to be inferred (km in eq 1).30,31This
observation suggests that the laboratory controls that optimize
Lmn (i.e., maximize the magnitude ofLmn) may also result in
favorable inversion quality for the model parametersk. Con-
sequently, sensitivity optimization can be employed in CLIP’s
analysis module (prior to the iterative inversion process among
the control and the inversion modules) to estimate the control-
(s) uc

/(t) that may result in maximal or at least enhanced
inversion qualityQinv

/ .
The experimental sensitivity coefficientLmn

i (t) for the con-
trol uc

i (t) at time t can be calculated in different ways
depending on the circumstances. If the search ranges ofkm and
the variations inXn

i (t) are sufficiently small,Lmn
i (t) can be

determined by a partial derivative∂ ln Xn
i (t)/∂ ln km.30,31 In

cases where either term is large, global sensitivity measures
become more appropriate. One convenient way to obtain the
global sensitivity coefficientLmn

i (t) is to randomly sample the
model parameters within their search ranges [kL,kU] and
calculate the system’s responseXn,t

z,i for each samplekz (z ) 1,
2, ...,Z). Lmn

i (t) can then be determined as a standard deviation

where〈Xn,t
i 〉 is the mean of theXn,t

z,i values averaged over theZ
samples. This measure is directly associated with classical Monte
Carlo integration and has been used elsewhere.25 Note that all
the M parameterskm are randomly sampled simultaneously in
calculating the global sensitivity. A normalized sum of these
global sensitivity terms can be used to compute the cost function
Jsens

i for optimizing (usually maximizing)ui(t), such as

whereRn g 0 weights the role ofXn.
The importance of this sensitivity optimization approach lies

in its ability to save in the number of laboratory experiments.
Calculating and optimizingJsens

i does not require any labora-
tory experiments because the search ranges ofk and the model
ODEs are both prespecified. In principle, if there exists an exact
correspondence betweenQinv

i and Jsens
i for the controluc

i (t),
only one run of laboratory perturbations and measurements is
necessary for extracting the best-quality model parametersk
after the sensitivity optimization. Additionally, global search
algorithms, such as the GA can be implemented inexpensively
for the sensitivity optimization, which can provide further
advantages in terms of its reliability.

In typical applications, the controluc
/(t) that optimizesJsens

may not be the exact one that optimizesQinv, because (a) the
two measures may not have perfect correspondence, and (b)
the sensitivity measureJsensis calculated from random samples
kz within the pre-defined search range [kL,kU], whereas theks

solutions consistent with the laboratory data evidently lie in a
subdomain of [kL,kU]. Two methods are introduced to address
this issue, both integrating the sensitivity optimization algorithm

Qinv
i )

1

M
∑
m)1

M x1

S
∑
s)1

S

(km
i,s,u - km

i,s,u)2 + x1

S
∑
s)1

S

(km
i,s,l - km

i,s,l)2

km,max - km,min + cm

(7)

Lmn
i (t) ) [∑z)1

Z

(Xn,t
z,i - 〈Xn,t

i 〉)2

Z
]1/2

(8)

Jsens
i )

1

T
∑
t)t1

tT 1

Nr
∑
n)1

Nr

[RnLmn
i (t)] (9)
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in CLIP’s analysis module with the rest of the package. The
first method utilizes the fact that the controluc

/(t) obtained
from the sensitivity optimization usually provides better inver-
sion quality than the random trial controlsuc

0(t) used in the
identification without sensitivity optimization. Therefore, itera-
tive parameter identification is initiated withuc

/(t) being the
first trial control and most probably it will take less experiments
to converge. The second method also appliesuc

/(t) experimen-
tally and extracts the resultant consistent parameter distribution
[kmin

/ , kmax
/ ]. This information is then fed back to the analysis

module, which peforms another round of sensitivity optimization
from this reduced parameter range to updateuc

/(t). This closed-
loop process continues until satisfactory parameter distributions
are obtained orJsenscan no longer distinguish different control
candidates within the laboratory errors.

3. Illustration

Similar to the original OI algorithm, the operation of CLIP
is simulated for the identification of a tRNA proofreading
mechanism.10,11 The model contains 10 chemical species, 16
reaction rate constants, and 10 kinetic equations as shown below:

The details of the model and the physical meaning of the species
are described in refs 1, 10, and 11. In this illustration, six rate
constants (k1, k2, k5, k-5, k6, k-6) are selected for extraction by
CLIP and its algorithmic performance is compared with OI. On
the basis of the previous work,1 x4 is selected by the analysis
module as the optimal component for disturbing/controlling the
system (i.e.,xc ) (x4) anduc(t) ) (ux4(t))), andx8 andx10 are
the best for recording the system’s dynamic response (i.e.,xr

) (x8, x10) andNr ) 2 in eq 3). Similar to the previous work,
each time-dependent control fluxux4(t) is expressed as a sum
of four Gaussians

Because thelth Gaussian is encoded by three control parameters
(am,l with m ) 1, 2, and 3), a total of 12 control parameters are
optimized in searching for the best controlux4(t) that leads to
an extractedk i,s distribution with the highest inversion quality
Qinv

i . The coefficienta1,l is confined to positive values consid-
ering the biological nature of the system. The weightw in eq 2
is set to zero, and rapidly varying structures in the controls are
prevented by setting appropriate boundaries to the control
parametersam,l. The errorεn

i represents the sum of all sources
of laboratory errors (e.g., observables, controls, etc.) and is
simulated as(10% around the steady-state values of the
corresponding system components. All rate constants are
transformed to a logarithmic scale to ensure a more thorough
sampling over the large parameter space and better normalization
across different rate constants.

To assess the performance of the inversion module with and
without the modified cost function (sections 2.1 and 2.2.1), 50
random controlsux4

i (t) (i ) 1, 2, ..., 50) are introduced to the
system. After applying each control, the response ofx8 andx10

is recorded atT ) 10 time points and the data (X8
i (t), X10

i (t),
and am,l

i ) are forwarded to the inversion module, which
searches fork i,s solutions that achieve satisfactory agreement
between the computational and the simulated experimental data
within the data error. For both algorithms, a solutionk i,s is
considered satisfactory and saved whenJinv

i,s ) 1. Equation 3
serves as the cost function for the inversion GA in OI, and eqs
5 and 6 (withcm ) 1 and w ) 1) guide the two modified
inversion GAs in CLIP. The search continues until convergence
is reached for the distribution ofk i,s, corresponding to theQinv

i

value in eq 4 (OI) or eq 7 (CLIP) being stable. 500 to 1000k i,s

solutions (i.e.,S ) 500 to 1000) are normally needed to reach
convergence in OI, whereas only 100-200 are necessary for
each GA to converge in CLIP. Most of thekm

i,s solutions
recovered in CLIP locate near the upper and lower edges of
the corresponding distribution, whereas they are much more
scattered in OI (data not shown here). These results clearly
confirm the postulate that considerable computational time can
be wasted in OI by searching fork i,s values lying in the middle
of the solution distribution, whereas the modified inversion cost
function of CLIP can enable more efficient recovery of the
defining characteristics of thek i,s distribution.

Figure 2 compares the inversion qualityQinv
i for the 50

random controls between OI and CLIP. It can be seen that OI
and CLIP perform comparably for the “bad” controls (i.e.,
controls that result in largeQinv

i values), whereas CLIP tends
to yield largerQinv

i values for the “good” controls than OI
does. Note that the ideal goal of the inversion module is to
extract the full family of k i,s solutions consistent with the
laboratory data for anyuc

i (t), thus a larger value ofQinv
i for the

same control (note that in the tests with the 50 random controls,
there is no attempt at minimizingQinv

i ) means a better ap-
proximation of the true solution family, which will maximize
the value ofQinv

i for uc
i (t). This indicates that the modified

inversion algorithm is also more reliable in extracting the full
family of parameters consistent with the observed data.

The performance of CLIP with both the new inversion module
and the new control module is also tested (without incorporating
the sensitivity optimization algorithm in section 2.2.3). Figure
3 shows the evolution of the normalized solution distribution
(calculated from eq 4) over the iterative experiments of OI and

dX1

dt
) k-3X5 + k-4X6 + (k7 + k1)X7 + (k8 + k2)X8 -

k3X1X3 - k4X1X4 - k-7X1X9 - k-8X1X10

dX2

dt
) (k-5 + k1)X7 + (k-6 + k2)X8 + k9X9 + k10X10 -

k5X2X5 - k6X2X6

dX3

dt
) f1 + k-3X5 + k1X7 - k3X1X3

dX4

dt
) f2 + k-4X6 + k2X8 - k4X1X4

dX5

dt
) k3X1X3 + k-5X7 - k-3X5 - k5X2X5

dX6

dt
) k4X1X4 + k-6X8 - k-4X6 - k6X2X6

dX7

dt
) k5X2X5 + k-7X1X9 - (k-5 + k7 + k1)X7

dX8

dt
) k6X2X6 + k-8X1X10 - (k-6 + k8 + k2)X8

dX9

dt
) k7X7 - k-7X1X9 - k9X9

dX10

dt
) k8X8 - k-8X1X10 - k10X10

ux4
(t) )∑

l)1

4

a1,l exp[-(t - a2,l)
2/a3,l] (10)
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CLIP for inverting the six rate constants. Note that eq 7 is used
to calculate the inversion quality in CLIP, but the corresponding
value calculated from eq 4 is plotted in Figure 3 to provide for
a fair comparison with OI. OI converges after∼450 control
experiments and CLIP converges after∼50 experiments. The
upper (km,max

/ /km) and lower (km,min
/ /km) limits of the final rate

constant distributions relative to the corresponding true values
km are shown in Figure 4 for OI and CLIP. Both algorithms
extract rate constant distributions that include the true values.
The final inversion quality is comparable for the two methods:
OI recovers slightly narrower distributions fork5 and k-5,
whereas CLIP provides better inversion quality fork1, k6, and
k-6.

Figure 5 shows the final controls found by OI and CLIP when
the narrowest rate constant distribution is achieved. It needs to
be emphasized that the best control identified by OI actually
yields better inversion quality compared with that achieved by
CLIP’s final control alone (see Figure 4), but OI and CLIP's
final inversion qualities are comparable. This phenomenon
results from two differences between CLIP and OI. First, the
control GA in OI is a better global search algorithm than the

simplex in CLIP (section 2.2.2); thus in principle OI will find
a control that, when applied alone, can lead to better inversion
quality. However, CLIP updates the parameter search ranges
[km

L , km
U] by [km,min

i , km,max
i ] after each controluc

i (t) (section
2.2.1); thereby it indirectly utilizes the information fromall
previous experiments and becomes a more efficient algorithm.

The performance of CLIP's sensitivity optimization algorithm
(section 2.2.3) is also assessed. A GA is employed to search
globaly for the best controlux4

/ (t) that maximizes the normal-
ized sensitivity ofX8(t) and X10(t) with respect to random

Figure 2. Inversion qualityQinv obtained from OI and CLIP for 50
random controls.Qinv is calculated by using eq 4 withwm ) 1 andM
) 6 (six unknowns).

Figure 3. Evolution of the normalized solution distribution (calculated
from eq 4 withwm ) 1 andM ) 6) against the number of iterative
experiments of OI and CLIP for inverting the six rate constants.

Figure 4. Solution distributions for the six rate constants relative to
their true values, extracted by using (a) the optimal control experiment
found by OI, (b) all the iterative control experiments of CLIP, and (c)
the final control experiments of CLIP alone. The difference between
(b) and (c) is illustrated in section 3. The true rate constants have relative
value 1. The respective mean value of each distribution is also marked.

Figure 5. Control fluxes that give the best inversion quality, found
by the OI and CLIP operations.
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variations in the six rate constants, utilizing the eq 9 (withRn

) 1) as its cost function. Figure 6 shows thatux4

/ (t) is similar to
the best control found by OI, which is obtained by directly
minimizing the inversion qualityQinv

i through iterative rounds
of laboratory control optimization and parameter inversion. The
rate constant distributions corresponding toux4

/ (t) are slightly
wider, meaning slightly lower inversion quality, than those
recovered from OI (Figure 7), which is also expected for reasons
mentioned in section 2.2.3. Because the sensitivity optimization
providesux4

/ (t) without any laboratory experiments, its advan-

tage is evident, especially when high-resolution identification
is not necessary or the experiments are very expensive.

Starting from the controlux4

/ (t) identified by the sensitivity
optimization, standard CLIP inversion is implemented with the
guidance of the simplex algorithm. After∼25 closed-loop
experiments (i.e., an additional laboratory cost reduction of 50%
from using the simplex algorithm with random trial controls
uc

0(t) as with CLIP in Figure 4), convergence is reached and
the parameter distribution is comparable with OI (Figure 7) and
CLIP's performance in Figure 4. Additional iterative rounds of
sensitivity optimization (to provide new controlsux4

/ (t)) and
parameter inversion (to update [kmin

/ , kmax
/ ]) was also carried

out. Only moderate improvement in the inversion quality was
achieved upon the convergence of the procedure, with the main
gain coming from the initial sensitivity optimization to yield
ux4

/ (t).

4. Conclusion

A previous work developed a general optimal identification
(OI) technique for reliable inversion of biochemical reaction
networks.1 A number of algorithmic modifications are intro-
duced to OI in this paper to form the foundations of a closed-
loop identification package (CLIP) for nonlinear dynamical
systems. Simulation results clearly demonstrate that the algo-
rithms in CLIP not only can reduce experimental and compu-
tational costs but also can increase reliability, inversion quality,
and exploitation of all available information.

It needs to be emphasized that CLIP does not replace, but
encompasses and enriches, the original OI technique. The
original algorithms in OI should not be considered as obsolete,
as the added methods in CLIP are not necessarily superior under
all circumstances. For example, the simplex algorithm may not
always behave better than a GA in the control module, because
when dealing with highly complex problems, the global search
ability of GA may be necessary for finding a good control. In
addition, CLIP should not be considered as a system-
independent, black-box method. The users will inevitably benefit
from proper usage of the existing knowledge about the target
system, careful design of the control and measurement experi-
ments, and judicous selection of the computational algorithms
and cost functions.

Despite the significant improvements, additional strategies
can be introduced to further reduce CLIP's operational costs.
For example, most of the computational time is spent on
integrating the ODEs for the trial solutionski,p. Suitable mapping
techniques can be implemented to reliably interpolate the
relationship betweenk i,p and the system’s behaviorXr

i(t), thus
avoiding the need for ODE integration for every trialk i,p.32-34

We have successfully applied concepts and algorithms similar
to those for CLIP in inverting quantum-mechanical observa-
tions.35,36Future research will aim to address specific problems
that may arise in identifying other networks. One issue is how
precise the target system needs to be identified. This issue is
especially relevant to bionetwork identification because biologi-
cal systems can be very robust to most small changes in its
internal parameters (e.g., neutral gene mutations), which implies
that (a) high-precision values may not be necessary for many
parameters and (b) integration of robust system theory and
techniques may assist the identification of these systems.

Acknowledgment. The authors acknowledge support from
the National Science Foundation and the Environmental Protec-
tion Agency.

Figure 6. (a) Control flux that results in the best inversion quality
obtained by OI. (b) Best control fluxuc

/(t) found by the virtual
sensitivity optimization algorithm in CLIP's analysis module. (c) Last
control obtained from CLIP’s iterative inversion algorithm guided by
the simplex algorithm, starting fromuc

/(t) instead of random controls
uc

0(t).

Figure 7. Solution distributions for the six rate constants relative to
their true values, extracted from the three corresponding methods in
Figure 6.
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